Polymeric scaffolds as stem cell carriers in bone repair




Journal of Tissue Engineering and Regenerative Medicine (J Tissue Eng Regen Med)


Filippo Rossi, Marco Santoro, Giuseppe Perale


Link PDF


Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair
of large bone defects resulting from resection, trauma or non-union fractures still requires the
implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these
needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent
advances in polymer science have provided several innovations, underlying the increasing importance
of macromolecules in this field. To address the increasing need for improved bone substitutes,
tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials,
incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric
materials have shown a great affinity for cell transplantation and differentiation and, moreover, their
structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily
be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible
polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013
John Wiley & Sons, Ltd.


Industrie Biomediche Insubri SA
via Cantonale 67, CH-6805 Mezzovico-Vira, Switzerland
t. +41 91 93.06.640
f. +41 91 220.70.00